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SUMMARY

The gridless Lagrangian method smoothed particle hydrodynamics (SPH) is preferentially used in CFD
to simulate complex �ows with one or several convoluted free surfaces. Indeed, this type of �ow would
require distorted meshes with Lagrangian �nite di�erence methods or very �ne meshes with VOF. As
the literature is quite scarce concerning SPH validations for academic problems, we present in this paper
some results relative to laminar recirculating �ows. The ability of SPH to reproduce recirculation zone
is revealed through a 2D hill and a backward-facing step geometry: axial velocity pro�les obtained
with SPH are quite satisfactory and separation and reattachment points are well predicted in both cases.
Moreover, some practical and robust wall modelling conditions are also introduced and the limitation
of the nearly incompressible assumption, used in most standard SPH codes, is illustrated. Indeed, we
reveal that it is necessary to consider a relatively high speed of sound in order to avoid numerical
voids. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The smoothed particle hydrodynamics (SPH) numerical method is successfully applied in �uid
mechanics to simulate delicate free surface �ows (dam breaking, wave �umes, etc.) which
would require complex meshes with classical Eulerian code. SPH is very e�cient for rapid,
convection dominated �ows where turbulence or viscous e�ects are negligible. However, the
validations are fairly qualitative and as noted by Morris [3], it is not so easy to thoroughly
test the SPH method on equilibrium, academic �ows, in particular with recirculation zones.
For this purpose, this paper presents results relative to laminar separated �ows in a 2D hill
and a backward-facing step geometry. Moreover, practical boundary conditions are presented
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and the limitation of the nearly incompressible assumption, used in most standard SPH codes,
is also illustrated.

2. THE SPH METHOD

2.1. Heart of the method

In SPH formalism, the �uid is discretized with a �nite number of macroscopic �uid particles.
Each particle a is characterized by a mass ma, a density �a, a pressure pa, a velocity vector ua
and a position vector ra. At the heart of SPH is the interpolation formula (1) which evaluates
the value of any �ow property A at the position r, in relation with all other �uid particles b

A(r)=
∑
b

mb
�b
Abwh(r − rb; h) +O(h2) (1)

Here wh is an interpolating function which plays a central part in SPH: it depends on the
distance between two particles and a parameter h called the smoothing length, here pro-
portional to the initial particle spacing. In order to reduce the number of particles b in-
volved in Equation (1) (and thus to reduce the calculation time), it is convenient to consider
kernels characterized by a compact support of radius ht , proportional to the smoothing length
h. Consequently, only particles b located in the disc (or sphere, in 3D) of radius ht and cen-
tred on a will contribute to the evaluation of the function A relative to the particle a. General
expressions of kernels are given by Morris [3] and Monaghan [1]. In most SPH codes, spline
kernels are used and we consider here the fourth-order spline kernel [6].

2.2. Fluid mechanics equations in SPH formalism

• An SPH form of the Lagrangian continuity equation can be written as

d�a
dt
=

∑
b
mbuabẇh(rab)�ab (2)

where uab= ua − ub and �ab= ra − rb=rab. ẇh corresponds to the spatial partial derivative
of the kernel and d=dt to a Lagrangian derivative obtained by following the motion of
a particle.

• In a Lagrangian form, the equation of motion is
du
dt
= − 1

�
∇p+ ��u + F e (3)

where � denotes the kinematic viscosity of the �uid, p the pressure, � the density and
F e external forces such as gravity or Lorentz force in magnetohydrodynamics.
If the continuity equation (2) is used, Bonet [4] proved that the pressure gradient term

must be discretized according to

∇pa=
∑
b

mb
�b
(pb + pa)ẇh(rab)�ab (4)
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In SPH theory, viscous e�ects are commonly modelled by an arti�cial pressure [1, 9]
according to

��ua=
∑
b
mb

16�
�a + �b

uab:rab
r2ab + �2

ẇh(rab)�ab (5)

with �2 = 0:01h2 introduced to avoid a zero denominator and rab= ra − rb.
• The pressure of each particle is determined with the following sti� state equation [10]:

p(�)=
�0c20
�

[(
�
�0

)�
− 1

]
(6)

where �0 represents a reference density, c0 a numerical speed of sound and � a constant
coe�cient equal to 7. In order to simulate a nearly incompressible �ow, c0 must be at
least ten times superior than the maximal velocity of the �ow. This nearly-incompressible
assumption thus induces a Mach number M less than 0.1. Consequently, the relative
variation of density, which scales as M 2 [3], is less than 1%.

3. LAMINAR 2D HILL FLOW

3.1. Geometry of the system
We consider the 2D hill de�ned in ERCOFTAC workshop [11] and represented in Figure 1
(left). Periodic conditions are applied with respect to x-direction, in order to represent an
in�nite hill channel.

3.2. Fluid and wall discretization

The �uid is discretized with 19 548 particles spaced by �r=1mm. These particles are initially
placed on a regular Cartesian lattice and contrary to classical Eulerian codes, there is no need
to re�ne the mesh near the wall in the considered case. The wall is modelled with solid
particles called wall particles. Moreover, in order to ensure the impermeability of the wall,
three layers of mirror particles are added under the wall: the density of wall and mirror
particles evolves thanks to the contribution of �uid particles through the continuity equation
(2). Indeed, if the �uid particle a is linked to the solid or mirror particle b, the b-contribution
to the evolution of a-density is equal to

mbuabẇh(rab) (7)

a b c d

h

e f g h

z

x
S

Figure 1. Geometry of the 2D hill channel (left) and the backward-facing
step (right), with four pro�les in each case.
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As the particle b is also linked to the �uid particle a, the contribution of the particle a to
the evolution of b-density is also given by Equation (7), since the continuity equation (2) is
symmetric with respect to a and b subscripts. The pressures of wall and mirror particles are
then computed with the state equation and these particles are involved in the pressure gradient
relative to �uid particles. These new wall conditions also enable a perfect impermeability of
the wall in rapid dynamic phenomena such as dam breaking. Contrary to the repulsive forces
commonly used in SPH to represent wall [1], the present formulation does not introduce any
ad hoc coe�cient. Moreover, in contrast to traditional mirror particles used in most SPH
codes, the method proposed here considers �xed particles and can be easily programmed.

3.3. Simulation conditions

A laminar �ow of water in the 2D hill channel is investigated. The Reynolds number, based
on the mean bulk velocity, the hill height h and the kinematic viscosity, is equal to 50. In
order to reach this value, a propelling horizontal force per mass F is applied to each particle
and is updated at each time step to impose the correct mass �ow rate [6].

3.4. Results relative to the 2D hill �ow

As there are no theoretical solutions for this problem, the results obtained with SPH are com-
pared to those obtained by an unstructured Eulerian code based on �nite volume method [11].
For this type of academic laminar �ows, the solution given by the Eulerian code is considered
as a reference one. We compare here axial velocity relative to four of the ten pro�les de�ned
in ERCOFTAC workshop [11] and represented in Figure 1. Figures 2(a)–(d) reveal that axial
velocity pro�les obtained with SPH are quite close to those obtained with the Eulerian code.
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Figure 2. Axial velocity pro�les obtained with an Eulerian code (—) and
SPH (•) for the 2D hill (a)–(d) and the backward facing step geometry

(e)–(h). h is the hill height and S the step height.
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The pro�les located in the vicinity of the hill reveal the presence of the recirculation zone.
It has also been determined that SPH has an error of 0.7% (compared to the Eulerian code)
for the separation point prediction and an error of 4.3% for the reattachment point prediction.
In this last case, the error is more signi�cant, due to the Lagrangian characteristic of SPH:
indeed, the determination of this length is quite delicate.

4. LAMINAR BACKWARD-FACING STEP

A backward-facing step is considered here to anchor the separation point. The separation
occurs here at the step position.

4.1. System modelling

The geometry of the backward-facing step is based on the one used by Armaly [12] and
represented in Figure 1 (right). However, for reasons of convenience, we add another step at
the end of the channel in order to apply periodic conditions with respect to the x-direction.
The �uid is discretized with nearly 46 000 particles and the initial inter-particle distance �r is
decided from that 30 particles are placed along the step height. The wall modelling is identical
to the previous case. We consider a �ow of air, characterized by a Reynold number of 100
based on the mean bulk velocity, a length equal to twice the inlet height and the kinematic
viscosity of the air [12].

4.2. Results

At �rst, the speed of sound is ten times superior to the maximal velocity of the �ow, according
to the nearly-incompressible assumption. As shown in Figure 3 (left), a large void appears next
to the step. This means that the pressure gradient term is not high enough in this zone. Once
a void appears, the pressure gradient cannot increase any more as there are no particles in
the void to account for this depression. A way of increasing the range of admissible pressure
values is to alter the compressibility. According to Equation (6), the pressure of particle
(and consequently the pressure gradient term) is increased with a higher speed of sound.
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Figure 3. Void due to the nearly incompressible assumption (left) and correction with a
higher speed of sound (right) in the case of the backward-facing step.
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By increasing the numerical speed of sound by a factor 4 (which means that the speed of sound
is now forty times higher than the maximal velocity of the �ow), the void no longer appears
(see Figure 3 (right)) and the recirculation zone is well established. However, increasing the
speed of sound also induces smaller time steps due to the CFL condition [6]. Four velocity
pro�les, represented in Figure 2, are compared with the results of an Eulerian code based on
�nite volume. There is a good agreement between the velocity pro�les at each position (see
Figure 2(e)–(h)). Moreover, the reattachment point positions relative to SPH, the Eulerian
code and the experiments correspond to x=S=6, 6.7 and 6.3, respectively.

5. CONCLUSION

The ability of SPH to simulate a separated �ow has been investigated through a 2D hill �ow.
In this case, the nearly-incompressible assumption gives satisfactory velocity pro�les and
the separation and reattachment points are well predicted. However, by considering laminar
�ow over a 2D backward-facing step geometry, it has been revealed that SPH with arti�cial
compressibility is prone to creating bubbles of void in recirculation regions. Although the
compressibility e�ect for a Mach number of 0.1 is generally considered acceptable as a nearly-
incompressible �ow approximation, SPH behaves as a rare�ed gas in regions of low pressure.
Only with a corrected Mach number of 0.025 was it possible to simulate a separated �ow
in a backward-facing step geometry. The parameters which describe the recirculation zone
are then in good agreement with those obtained with a classical Eulerian code. Moreover,
we introduced practical wall conditions with mirror particles to ensure a total impermeability
of the wall. The following part of this work will be to develop a fully incompressible SPH
method and to adapt large eddy simulation concept to SPH to treat turbulent e�ects.
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